Time Series And Mobility Data Analysis

Credits: 
3
Hours: 
30
Area: 
Big Data Mining
Academic Year: 
2024-2025
2023-2024
Description: 

The course will deal with time series and spatio-temporal data, in particular mobility. We will illustrate the fundamental characteristics of these two data classes as well as the most common pre-processing and analysis methods. Finally, each lesson will provide examples of use and exercises carried out in Python with the appropriate libraries.

Prerequisites: Data Mining & Machine Learning, Python

Notions: 
  • Lesson 1: Time Series: characteristics and similarity measures
  • Lesson 2: Time Series: patterns (Motifs, Discords, Sequential patterns)
  • Lesson 3: Time Series: forecasting
  • Lesson 4: Introduction to Geospatial Analytics and fundamental concepts
  • Lesson 5: Geospatial and Mobility data preprocessing and semantic enrichment
  • Lesson 6: Individual & Collective mobility laws and models
  • Lesson 7: Mobility Patterns and Location prediction
Technics and tools: 
  • scikit-mobility
  • pandas
  • tslearn
     
Competences: 
  • Conoscenza delle caratteristiche fondamentali di varie sorgenti di dati per time series e mobilità
  • Conoscenza di metodi analitici di base (predittivi, clustering e pattern) per time series e dati di mobilità
  • Capacità di realizzazione di semplici processi analitici in python per time series e dati di mobilità

Partners